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Figure 7 Infrared images of window frames (a) and Entrance door and mechanical closet door (b) 

The experiment recorded sensor data for energy model development and model validation. 

The sensor data include:  

• Zone air temperature from 28 sensors (four stratification trees, each with seven sensors). The 
average temperature from the 20 sensors is used as the zone air temperature data. The top 
(underneath the ceiling tile) and bottom (above the floor) temperature sensors from each 
stratification tree were excluded from the average calculation 

• Electric power from individual outlets for electric heaters, air mixing fans, exhaust air fan, 
and control systems (computers, sensor connection hubs).  

• CO2 PPM decay data for each zone infiltration case 

• Outside air inlet temperature from the supply air duct 

• Internal wall surface and slab temperature 

• Outdoor air dry-bulb temperature, global solar irradiation, diffuse solar radiation, and wind 
speed 

3. EnergyPlus model for the inverse model validation  

An EnergyPlus model that represents the FLEXLAB testbed cell was developed to validate 

the results from the inverse model against the measured data from the experiment. Figure 8 

shows screenshots of the Testbed 3 EnergyPlus model. The developed EnergyPlus model reflects 

the physical properties of the testbed structure, real measurement of internal heat gain, and 



outdoor airflow designed to simulate free-floating zone air temperature. FLEXLAB measures 

local climate data including the outdoor air dry-bulb temperature, the global solar irradiation, the 

diffuse solar radiation, and the wind speed and direction, which were compiled into EnergyPlus 

weather (epw) file for the simulation using the actual outdoor environment.  

 

Figure 8 Schematic view of the EnergyPlus model for the FLEXLAB Testbed 3 

To capture these internal mass for the light internal thermal mass and the heavy mass 

configuration with 1000 library books in 50 boxes, we used forward EnergyPlus simulations to 

empirically determine the zone capacitance multipliers corresponding to these two 

configurations. The internal mass multiplier was set to 3.0 and 5.0 representing the best for the 

light and heavy internal thermal mass respectively from the FLEXLAB EnergyPlus simulations. 

The initial EnergyPlus model has an internal mass multiplier of 1.0, which represents no internal 

mass object. We iteratively tested different multipliers to find the best multipliers representing 

the internal mass of the experiment design for the light mass and the heavy mass with books of 

typical office settings. Normalized Mean Bias Error (NMBE) and Coefficient of Variance of 

Root Mean Square Error (CVRMSE) are commonly used, as defined in ASHRAE 14 Guideline, 

to determine the goodness of fit between the simulation results and the measured data [41].  

NMBE =
∑ (𝑦𝑦𝑖𝑖 −𝑛𝑛
𝑖𝑖=1 𝑦𝑦�𝑖𝑖)
𝑦𝑦� × 𝑛𝑛

× 100 

South North



CVRMSE =
(∑ (𝑦𝑦𝑖𝑖 −𝑛𝑛

𝑖𝑖=1 𝑦𝑦�𝑖𝑖)2/𝑛𝑛)1/2

𝑦𝑦�
 

Where y represents the simulation temperature, y� for the measured temperature, ȳ for the 

mean of the simulated temperature, n for the number of data points. Two sets of results, 

simulated and measured temperature show that the NMBE and CVRMSE are no greater than 2% 

for the 10-minute timestep results as shown in Table 2, which indicates the EnergyPlus model 

well represents the experiment conditions. 

Table 2 Zone Air Temperature from the Calibrated EnergyPlus Model Compared to the 
Measured Air Temperature 

 
 IM0- 
INF0  

 IM0- 
INF1  

 IM0- 
INF2  

 IM0- 
INF3 

 IM1- 
INF0  

 IM1- 
INF1  

 IM1- 
INF2 

 IM1- 
INF3  

NMBE 0.50% -0.03% 0.13% -0.33% 0.12% 0.10% 0.68% -0.26% 
CVRMSE 0.85% 0.99% 1.20% 0.82% 1.45% 1.11% 1.50% 1.08% 

 

When conducting an energy performance analysis of the existing buildings for retrofit 

projects, energy model calibration is one of the critical tasks. The calibration of the forward 

physics-based energy simulation models involves thousands of input parameters, which yields 

multiple non-unique solutions [14,42,43]. The conventional calibration uses an unmodified 

simulation engine and multiple runs to tune multiple input parameters. As a result, mathematical 

and statistical methods have been of interest in calibration research for automated calibrated 

building energy models [44,45]. The inverse modeling enables calibrating a building energy 

model that combines inverse and forward physics-based calculations and essentially performs 

targeted calibration on specific inputs. The targeted calibration uses the inverse zone air heat 

balance algorithms to calculate infiltration and internal thermal mass, while in traditional model 

calibration, users rely on rules-of-thumb or default values provided by the simulation software. 

Figure 9 illustrates the concept of calibration using the inverse model. The inverse modeling 



approach uses a single run of the simulation engine to tune selected parameters to derive the 

target input parameters and input them in the regular energy models. The EnergyPlus object 

implemented in 8.7, HybridModel:Zone, enables the inverse model simulation triggered by the 

input flag of “Calculate Zone Air Infiltration Rate” or “Calculate Zone Internal Thermal Mass.” 

Then, the derived values, i.e., the calibrated values from the inverse simulation, are added to the 

forward model; this offers a more advanced calibration of energy models for existing buildings.  

 
Figure 9 The calibration workflow that integrates the inverse and forward modeling 

 

4. Inverse model validation  

The FLEXLAB experiment measured the zone air temperature for three days for each 

scenario. It is important to consider sufficient time for the indoor air temperature to stabilize due 

to interactions of the cell structure with the dynamic environmental conditions when calculating 

the internal mass using the inverse model. Zone air heat capacity needs to be derived from the 

stabilized internal zone air temperature data that fully captures the stored heat in the air and the 

internal thermal mass. As discussed in the previous paper [1] that describes the derivation of the 
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inverse model algorithm, an underlying assumption of the inverse model is that the zone heat 

capacity is treated as constant for the equilibrium of the inversed zone air heat balance model. 

However, in a mathematical point of view, the calculated heat capacity of zone air and internal 

thermal mass will vary with the actual dynamic conditions, leading to the varying internal mass 

multiplier values for different time steps. The inverse model determines a time span that the zone 

air temperature difference between two adjacent time steps are large enough, to avoid the 

anomaly or overflow results due to the division term of the inverse model. The inverse model 

derived more reliable infiltration rates for time steps when the difference between the indoor 

zone air and outdoor air temperature is greater than 5°C.  Considering this, it is recommended 

that the zone air temperature needs to be measured for at least one week to ensure we have 

adequate time periods of needed measured data. However, in our experiments, measured 

temperature data was limited to three days for each case. To overcome this limitation, four days 

of simulated temperature data, from the calibrated model, were added to the dataset. Such seven 

days of the zone air temperature data were then used to derive the infiltration airflow rate and 

internal mass multiplier under the inverse model simulation mode.  

Table 3 shows the summary of the inverse modeling results that used the measured zone air 

temperature for each test case. The table presents the average calculated infiltration and internal 

mass multipliers. Further details of the inverse modeling results are presented in Figure 10 for 

the low internal mass case (IM0) with the infiltration airflow rate 0.42 ACH case (INF1) and in 

Figure 11 for the heavy internal mass case (IM1) with the scheduled infiltration (INF3). Each 

chart includes the calculated infiltration airflow rate converted to ACH and the internal mass 

multipliers at each timestep. The rectangular box in the chart indicates three days of the inverse 

simulation using the real measured zone air temperature. There are noises in the calculated 



infiltration airflow rates and internal mass multipliers for the period when the measured zone air 

temperature data were used. Although the energy model reflects the dynamics of the indoor 

environment, differences in the zone air temperature add uncertainties to the model parameters.  

Table 3 The Calculated Infiltration and Internal Mass Multiplier using the Measured Zone Air 
Temperature 

  Infiltration  ACH  Internal Mass Multiplier  
 

 EnergyPlus  
input  

Inverse modeling results  EnergyPlus 
input  

Inverse modeling results 
  1 week 

average  
 3 days 
average  

 1 week 
average  

 3 days 
average  

IM0-INF0 0.10 0.11 0.13 3.00 3.24 3.33 

IM0-INF1  0.42 0.42 0.42 3.00 3.32 3.53 

IM0-INF2 2.00 1.97 1.93 3.00 3.92 4.53 

IM0-INF3 0.7 nighttime, 0.18 
daytime 

0.69 nighttime, 
0.18 daytime 

0.66 nighttime, 
0.19 daytime 3.00 3.17 3.23 

IM1-INF0 0.10 0.10 0.10 5.00 4.90 3.60 

IM1-INF1 0.42 0.42 0.42 5.00 4.99 4.04 

IM1-INF2 2.00 2.02 2.05 5.00 5.70 5.98 

IM1-INF3 0.7 nighttime, 0.18 
daytime 

0.65 nighttime, 
0.19 daytime 

0.7 nighttime, 
0.17 daytime 5.00 5.07 4.20 

 



 

Figure 10  The Calculated Infiltration and Internal Mass Multiplier for the IM0-INF1 Experiment 
Case using the Measured Zone Air Temperature 
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Figure 11 The Calculated Infiltration and Internal Mass Multiplier for the IM1-INF3 Experiment 
Case using the Measured Zone Air Temperature 

An underlying assumption is that the zone heat capacity is treated as a constant variable for 

the equilibrium in the inversed zone air heat balance model. However, it should be noted that the 

calculated internal thermal mass multiplier varies with dynamic conditions, leading to the 

varying multipliers in a mathematical point of view. The internal mass multiplier calculations are 

only done when the zone air temperature differences for two adjacent time steps are greater than 

0.  This avoids the anomaly or overflow results from incorrect use of the inverse model. The 

inverse equation derives more reliable infiltration flowrates for time steps when the difference 

between the indoor zone air and outdoor air temperature is greater than 5°C [1]. Figure 10 and 

Figure 11 show timesteps that the inverse simulation was able to calculate internal mass 

multipliers and infiltration ACH values.  

The validation using the FLEXLAB experiment data enlightened the guideline on how to use 

the inverse model implemented in EnergyPlus. The internal thermal mass is an important 

component for building performance as it stabilizes internal temperature. Thus a certain period of 

the measured zone air temperature is needed to capture the thermal inertia of the building 

structure and interior furnishing equipment. It is recommended to measure the zone air 

temperature for at least seven days.  

The accuracy of the inverse model is dependent on the completeness of the energy model. 

The infiltration airflow rate and internal mass multipliers are inversely derived using the energy 

model with the new input of measured air temperature data. Thus, other uncertain parameters 

will have impacts on the infiltration and internal mass multipliers, because there are multiple 

combinations of the parameter values that can lead to the environmental condition of the 

measured zone air temperature. The actual weather data is also needed for the period of the 



inverse simulation. Future research is needed to investigate how the inverse model can be 

integrated with the traditional model calibration process to improve the accuracy of the 

simulation. 

The current implementation of the inverse model applies to operation periods when HVAC 

systems are off, i.e., spaces are in a free-floating mode. However, this is not a limitation of the 

inverse model but rather based on the assumption that measured energy delivered by HVAC 

systems (from the air side or water side of the coil) is not easily available in practice. When the 

measured energy at timestep from the HVAC systems (delivered energy or supply airflow and 

temperature) is known, the inverse model also applies. 

5. Conclusions 

This paper provides details of the validation method and the results of the inverse model 

using the data collected from the controlled experiments conducted at FLEXLAB. The 

experiments were designed to collect zone air temperature data under eight controlled testing 

configurations including two internal mass levels and four infiltration airflow rates. The 

measured zone air temperature was used to inversely calculate the internal thermal mass 

multipliers and infiltration airflows for each validation scenario using the inverse model feature 

implemented in EnergyPlus. The inverse model simulation results show good agreements with 

the measured data from the FLEXLAB experiments. Insights learned from the validation using 

the FLEXLAB experiments inform the application of the inverse model. It is expected that the 

inverse model implemented in EnergyPlus enables more accurate energy performance 

predictions to inform energy-efficiency retrofit decision making for existing buildings.  

A limitation is noted on the use of the combined 3-day measured data and the 4-day 

simulation data for the validation. Ideally, a seven-day or longer period of measured data would 



be needed for a cleaner validation, which is a future work when the dataset is available. The 

inverse model is not intended to replace the traditional energy model calibration methods. 

Instead its use in combination with the traditional energy model calibration methods would 

provide the optimal benefit, which will be described in a future publication. 
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